prospec
CTGF Human

CTGF Human

  • Name
  • Description
  • Cat#
  • Pricings
  • Quantity
  • CTGF Human

  • Connective Tissue Growth Factor Human Recombinant
  • CYT-541
  • Shipped at Room temp.

Catalogue number

CYT-541

Synonyms

CCN2, NOV2, HCS24, IGFBP8, MGC102839, CTGF, Connective Tissue Growth Factor.

Introduction

Connective Tissue Growth Factor belongs to the CCN family of proteins. The CCN family presently consists of six members in human also known as: Cyr61 (Cystein rich 61), CTGF (Connective Tissue Growth Factor), Nov (Nephroblastoma Overexpressed gene), WISP-1, 2 and 3 (Wnt-1 Induced Secreted Proteins). The CCN genes encode secreted proteins associated with the Extracellular Matrix (ECM) and cell membrane.
CCN proteins are matricellular proteins which are involved in the regulation of various cellular functions including: proliferation, differentiation, survival, adhesion and migration. They are expressed in derivatives of the three embryonic sheets and are implicated in the development of kidney, nervous system, muscle, bone marrow, cartilage and bone. During adulthood, they are implicated in wound healing, bone fracture repair, and pathologies such as: fibrosis, vascular ailments and tumorigenesis.
Full length secreted CCN proteins can show an antiproliferative activity, whereas truncated isoforms are likely to stimulate proliferation and behave as oncogenes.
The full length protein consists of four modulesModule I shares partial identity with the N-terminal part of the IGFBPs.
Module II includes a stretch of 70amino acid residues – which shares sequence identity with the Von Willebrand Factor Type C repeat (VWC).
Module III contains sequences sharing identity with the Thrombospondin type 1 repeat (TSP1) (WSXCSXXCG), which is thought to be implicated in the binding of sulfated glycoconjugates and to be important for cell adhesion.
Module IV, also designated CT, is encoded by exon5. It is the leasts conserved one of the four domains at the level of nucleotide sequence, but it appears to be critical for several of the biological functions attributed to the CCN proteins. Module IV resembles the CT domain of several extracellular protein including, Von Willebrand's factor and mucins. Sequence similarities to binding motifs are also found within this domain.
Proteolysis of the secreted full-length CCN proteins that has been reported in the case of CCN2 and CCN3 might result in the production of CCN-derived peptides with high affinity for ligands that full-length CNN proteins bind only poorly. Amino-truncated CCN2 isoforms were biologically active whereas no specific biological activity has been attributed to the truncated CCN3. Although the molecular processes underlying the production of these secreted isoforms is presently unknown, it is important to note that proteolysis occur at the same amino acid residues in both CCN2 and CCN3. An elevated expression of CCN2 has also been detected by Northern blotting in human invasive mammary ductal carcinomas, dermatofibromas, pyogenic granuloma, endothelial cells of angiolipomas and angioleiomyomas, and in pancreatic tumors. A study performed with chondrosarcomas representative of various histological grades established that CCN2 expression was closely correlated with increasing levels of malignancy.
In agreement with CCN2 playing a role in brain tumor angiogenesis, immunocytochemistry studies indicated that both glioblastoma tumor cells and proliferating endothelial cells stained positive for CCN2. In astrocytomas, CCN2 expression was particularly elevated in high grade tumors, with a marked effect of CCN2 on cell proliferation. Downregulation of CCN2 expression in these cells was associated with a growth arrest at the G1/S transition while over-expression of CCN2 induced a two-fold increase of the number of cells in the G1 phase. Gene profiling analysis allowed to identify a set of about 50 genes whose expression might account for the proliferative activity of CCN2 in these cells.
CCN2 was seen in a higher proportion of mononuclear cells of patients with acute lymphoblastic leukemia.

Description

CTGF Human Recombinant produced in E.Coli is a single, non-glycosylated, polypeptide chain containing 98 amino acids and having a molecular mass of 11.2 kDa.
The CTGF is purified by proprietary chromatographic techniques.

Source

Escherichia Coli.

Physical Appearance

Sterile Filtered White lyophilized (freeze-dried) powder.

Formulation

CTGF was Lyophilized from a sterile filtered aqueous solution containing 0.1% Trifluoroacetic Acid (TFA).

Solubility

It is recommended to reconstitute the lyophilized CTGF in sterile 18MΩcm H2O not less than 100µg/ml, which can then be further diluted to other aqueous solutions. 

Stability

Lyophilized CTGF although stable at room temperature for 3 weeks, should be stored desiccated below -18°C. Upon reconstitution CTGF should be stored at 4°C between 2-7 days and for future use below -18°C.

For long term storage it is recommended to add a carrier protein (0.1% HSA or BSA).

Please prevent freeze-thaw cycles. 

Purity

Purity of CTGF is greater than 90% as determined by SDS-PAGE.

Biological Activity

Determined by the dose-dependent stimulation of the proliferation of HUVEC cells. The expected ED50 for this effect is 1-2µg/ml, corresponding to a specific activity of 500-1000units/mg.

Amino acid sequence

MGKKCIRTPK ISKPIKFELS GCTSMKTYRA KFCGVCTDGR CCTPHRTTTL PVEFKCPDGE VMKKNMMFIK TCACHYNCPG DNDIFESLYY RKMYGDMA.

Safety Data Sheet

Usage

ProSpec's products are furnished for LABORATORY RESEARCH USE ONLY. The product may not be used as drugs, agricultural or pesticidal products, food additives or household chemicals.

Background

Title: Connective Tissue Growth Factor Human Recombinant: Insights into Production, Function, and Therapeutic Potential

 

Abstract:


Connective tissue growth factor (CTGF) is a multifunctional protein that plays a critical role in tissue homeostasis and repair. This research paper provides a comprehensive analysis of human recombinant CTGF, focusing on its production, characterization, and potential therapeutic applications. The paper discusses the significance of CTGF in connective tissue development, fibrosis, and wound healing. Furthermore, it explores the ongoing research and clinical trials investigating the therapeutic potential of recombinant CTGF in various pathological conditions. The information presented in this paper aims to deepen our understanding of human recombinant CTGF and its utility as a research tool and a potential therapeutic agent.

 

Introduction:


Connective tissue growth factor (CTGF) is a secreted protein that belongs to the CCN (Cyr61, CTGF, Nov) family. It is involved in diverse cellular processes, including cell proliferation, extracellular matrix synthesis, and angiogenesis. Human recombinant CTGF, produced through genetic engineering techniques, enables researchers to study its biological functions and explore its therapeutic potential.

 

Production and Characterization:


Recombinant CTGF is typically generated using expression systems such as mammalian cells or bacteria. The protein is then purified and characterized to ensure its structural integrity and functional activity. Quality control measures are implemented to confirm the specificity and biological activity of the recombinant CTGF.

 

Role in Tissue Homeostasis and Repair:


CTGF plays a critical role in connective tissue development, maintenance, and repair. It promotes the synthesis of extracellular matrix components, such as collagen and fibronectin, and regulates the activity of various growth factors. CTGF is also involved in wound healing and tissue remodeling processes. Understanding the molecular mechanisms underlying CTGF-mediated tissue repair provides insights into potential therapeutic interventions.

 

Therapeutic Implications:


The dysregulation of CTGF expression and signaling has been implicated in several pathological conditions, including fibrosis, arthritis, and cancer. Recombinant CTGF holds promise as a potential therapeutic agent for these diseases. Preclinical and clinical studies are being conducted to evaluate the safety and efficacy of CTGF-based therapies, such as CTGF-targeting antibodies and small-molecule inhibitors.

 

Conclusion:


Human recombinant CTGF is a valuable research tool and a potential therapeutic target in various pathological conditions. Its production, characterization, and applications in connective tissue biology contribute to our understanding of tissue repair mechanisms and the development of novel therapeutic strategies. Continued research and clinical trials exploring the therapeutic potential of recombinant CTGF offer promising avenues for improving patient outcomes.

References

Bibliography:

 

  1. Leask, A., & Abraham, D. J. (2003). TGF-β signaling and the fibrotic response. FASEB Journal, 18(7), 816-827.
  2. Grotendorst, G. R., & Duncan, M. R. (2005). Individual domains of connective tissue growth factor regulate fibroblast proliferation and myofibroblast differentiation. The FASEB Journal, 19(7), 729-738.
  3. Brigstock, D. R. (2003). The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocrine Reviews, 24(2), 61-79.
  4. Mendoza, F. A., & Piera-Velazquez, S. (2018). Role of connective tissue growth factor (CTGF/CCN2) in osteoarthritis. Frontiers in Biology, 13(2), 63-69.
  5. Abreu, J. G., Ketpura, N. I., Reversade, B., et al. (2002). Connective-tissue growth factor (CTGF) modulates cell signaling by BMP and TGF-β. Nature Cell Biology, 4(8), 599-604.
Back to Top